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A second-order BGK scheme for the equations
of radiation hydrodynamics

Song Jiang‡ and Wenjun Sun∗,†

LCP, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, China

SUMMARY

We present a second-order BGK scheme for the equations of multidimensional radiation hydrodynamics
(RHE) in zero diffusion limit by using the generalized Maxwellian (Comput. Fluids 2000; 29:917–933) and
the second-order BGK scheme for the Euler equations (J. Comput. Phys. 1993; 109:53–66; Gas Kinetic
Scheme for Unsteady Compressible Flow Simulations. Lecture Note Series 1998-03. Von Kárman Institute
for Fluid Dynamics, 1998). This extends a (first-order) kinetic flux vector splitting scheme (KFVS)
for RHE (Tang and Wu (2000)) to a second-order BGK scheme. Several one- and two-dimensional
numerical examples demonstrate improvement of the scheme in accuracy and resolution compared with
the KFVS scheme (Tang and Wu (2000)) and the first-order BGK scheme. Copyright q 2006 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

In this paper, we present a second-order BGK scheme for the equations of multidimensional
radiation hydrodynamics in zero diffusion limit.

The importance of thermal radiation in physical problems increases as the temperature is raised.
At moderate temperatures, the role of the radiation is primarily one of transporting energy by
radiative process, while at higher temperature, the energy and momentum densities of the radiation
field may become comparable to or even dominates the corresponding fluid quantities. In this case,

∗Correspondence to: Wenjun Sun, LCP, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009,
Beijing 100088, China.

†E-mail: sun wenjun@iacpm.ac.cn
‡E-mail: jiang@iapcm.ac.cn

Contract/grant sponsor: National Basic Research Program; contract/grant number: 2005CB321700
Contract/grant sponsor: NSFC; contract/grant numbers: 10225105, 10471011
Contract/grant sponsor: CAEP; contract/grant number: 2003-R-02

Copyright q 2006 John Wiley & Sons, Ltd.



392 S. JIANG AND W. SUN

the radiation field significantly affects the dynamics of the fluid. Hydrodynamics with explicit
account of the radiation energy and momentum contributions constitutes the charter of ‘radiation
hydrodynamics’. The theory of radiation hydrodynamics finds a wide range of application, includ-
ing such diverse astrophysical phenomena as waves and oscillations in stellar atmospheres and
envelopes, nonlinear stellar pulsation, supernova explosions, stellar winds, and many others (see,
e.g. References [1–3]). It has also direct application in other areas, for example to the physics of
laser fusion and of reentry vehicles.

In the case of (equilibrium diffusion and) zero diffusion limit, the equations of radiation hydro-
dynamics can be written as a nonlinear hyperbolic system of conservation laws, but different from
the Euler equations in the (high nonlinear) radiation terms. In numerical simulations of radiation
hydrodynamics, one of the main difficulties (of standard numerical methods) is to resolve and keep
track of strong shocks. Dai and Woodward [4] proposed the Godunov scheme inclusive of linear
and nonlinear Riemann solvers for the equations of radiation hydrodynamics. Their numerical
results show that their scheme preserves the principle advantages of Godunov schemes. However,
to our knowledge, their method is relatively costly.

In the past years, the development of the gas-kinetic schemes, such as kinetic flux vector split-
ting schemes (KFVS) based on the collisionless Boltzmann equation (see, e.g. References [5–11])
and BGK scheme based on a collisional BGK model (see, e.g. References [12–15]), has at-
tracted much attention and significant progress has been made. These gas-kinetic schemes do not
require any Riemann solvers, and they have provided robust and accurate numerical solutions
for various unsteady compressible flow (for example, cf. References [9, 10, 14, 15] and the ref-
erence therein). For the equations of radiation hydrodynamics in zero diffusion limit, Tang and
Wu [5] constructed a KFVS scheme, and presented several numerical examples to demonstrate
the performance of their scheme. As is well-known, the BGK schemes differ from the KFVS-
type schemes mainly on the inclusion of particle collisions in the gas evolution stage. Instead
of solving the collisionless Boltzmann equation, the BGK schemes use a collisional BGK model
in the numerical flux evaluation. Since the gas evolution process is a relaxation process from a
nonequilibrium state to an equilibrium one, the entropy condition is always satisfied by the BGK
scheme. Moreover, due to its specific governing equation, the BGK scheme gives the compressible
Navier–Stokes equations in smooth regions, and provides a delicate dissipative mechanism, which
is controlled by the pseudo-particle collision time and the intrinsic collisional model, to get a stable
and crisp shock transition in nonsmooth regions.

In this paper, we propose a second-order BGK scheme for the equations of multidimensional
radiation hydrodynamics in zero diffusion limit by including the non-equilibrium effect to a KFVS
scheme, and hence, extend the first-order KFVS scheme in Reference [5] to a second-order BGK
scheme. This extension to the second-order is the contribution of the present paper. To construct
our scheme, we use a generalized Maxwellian distribution introduced in Reference [5] to recover
the radiation hydrodynamical equations, and then, to apply the second-order BGK scheme for
the Euler equations described in References [12, 16] to simulate and keep track of strong shocks,
thus resulting in a second-order BGK scheme for the multidimensional radiation hydrodynamics
in zero diffusion limit. The numerical tests show an obvious improvement in accuracy and reso-
lution of the scheme of this paper over the scheme proposed in Reference [5] and the first-order
BGK scheme.

This paper is organized as follows: In Section 2, we recall the macroscopic description of
radiation hydrodynamics and the gas distribution function of equilibrium states in Reference [5] to
recover the d-dimensional radiation hydrodynamical equations in zero diffusion limit. In Section 3,
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the second-order BGK scheme is presented based on the generalized Maxwellian distribution given
in Section 2. In Section 4, several numerical tests are presented which demonstrate the availability
and accuracy of the present scheme, and comparisons with the KFVS scheme in Reference [5]
and the first-order BGK scheme are given.

2. EQUATIONS OF RADIATION HYDRODYNAMICS IN ZERO DIFFUSION LIMIT

For the equations of radiation hydrodynamics in zero diffusion limit, there are two ways of
description, one is macroscopic while the other is microscopic. We first introduce the macroscopic
equations describing the motion of a gas under a radiation field. Assuming that the radiative
temperature and the fluid temperature are equal, and that the gas is radiatively opaque so that the
equilibrium diffusion will be dealt with, and the mean-free-path of photons is much smaller than
the typical length of the flow, then, we can write the equations of radiation hydrodynamics without
radiative heat-diffusion in Rd , describing the conservation of mass, momentum and energy, as
(cf. References [1, 2])

�t� + div(�u) = 0

�t (�u) + div(�u ⊗ u) + ∇(p + 1
3aRT

4) = 0

�t E + div[u(E + p + 1
3aRT

4)] = 0

(1)

where �, u= (u1, . . . , ud), p and T denote the density, velocity, flow pressure and absolute
temperature, respectively, aR>0 is a radiation constant, and

E = 1
2�u

2 + �e + aRT
4 (2)

is the total energy, e= e(�, T ) is the internal energy, u2 = u21 + · · · + u2d .
From (1) and (2) we see that the system includes both gas and radiative contributions to flow

dynamics. The quantities 1
3aRT

4 and aRT 4 represent the radiative pressure and radiative energy
density, respectively. To complete system (1), one needs the equation of state for the pressure
p= p(�, T ). In this paper for the purpose of our test problems, we will limit our study to the
polytropic ideal gas: p= (� − 1)�e with �>1 being the specific heat ratio and e= cV T with cV
being the specific heat, and as in References [4, 5], we assume cV = 1 without loss of generality.
We point out that if one assumes aR = 0 in (1), then system (1) reduces to the usual inviscid
Euler equations.

Another way to describe the flow motion is based on the particle motion, or the statistical
description of a fluid, in which a gas distribution function f (x, t, v) is introduced to describe
the probability of particles to be located in a certain velocity interval, and to approximate usu-
ally the particle number density at a certain velocity in hydrodynamics, where v= (v1, . . . , vd)

is the particle velocity. Usually, the distribution function f is a basic unknown in the kinetic
theory, and satisfies the Boltzmann equation, we refer to References [17, 18] for the theory on the
Boltzmann equation.

The thermodynamic aspect of gas dynamics is based on the assumption that the deviation of
a gas from a local equilibrium state is sufficiently small. The distribution function f is usually
unknown in the real flow situation. However, the distribution function g corresponding to a local
equilibrium state can be explicitly given if the mass, momentum and energy are known. The
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394 S. JIANG AND W. SUN

gas distribution function for an equilibrium state plays an important role in the construction of
gas-kinetic schemes. In the sequel, we study the equilibrium distribution for (1).

For system (1) with aR = 0, i.e. the Euler equations with �-law, the equilibrium state is the
Maxwellian distribution (cf. References [17, 18]),

g(x, t, v, �) = �

(
�

�

)(d+K )/2

e−�[(v−u)2+�2] (3)

where �2 = �21 + · · · + �2K , (v − u)2 = (v1 − u1)2 + · · · + (vd − ud)2, and K = −d + 2/(� − 1)
is the internal degree of freedom, � =m/2kT with k and m being the molecular mass and the
Boltzmann constant, respectively. Actually, K = 1 in the numerical tests of this paper because
d = 2 and � = 5/3 are chosen. Then, the Euler equations can be recovered by taking moments as∫

Rd×RK
�(�t g + v · ∇g) d�= 0 (4)

where and in what follows, d�= dv1 · · · dvd d�1 · · · d�K , and the vector function � is given by

�=
(
1, v1, . . . , vd ,

v2 + �2

2

)t

and the superscript t denotes transposition.
On the other hand, when aR �= 0, system (1) cannot (easily) be written in the moment form (4)

through a Maxwellian distribution. As in Reference [5], here we introduce an equilibrium state
function with two parameters �1 and �2, instead of one parameter �, to recover (1) by the moment
method. Hence, we modify the Maxwellian distribution g in (3) to

ḡ(x, t, v, �) = �

(
�1
�

)d/2 (�2
�

)K/2

e−�1(v−u)2−�2�
2

(5)

where �1 and �2 are functions of T , m and k, and will be determined below.
Now, if we take moments of � with ḡ, we obtain⎛

⎜⎜⎜⎜⎝
�

�ui

1

2

(
�u2 + d

�

2�1
+ K

�

2�2

)
⎞
⎟⎟⎟⎟⎠=

∫
Rd×RK

�ḡ d� (6)

and ⎛
⎜⎜⎜⎜⎜⎜⎝

�u j

�uiu j + �

2�1
�i j

1

2
u j

[
�u2 + (d + 2)

�

2�1
+ K

�

2�2

]

⎞
⎟⎟⎟⎟⎟⎟⎠

=
∫

Rd×RK
v j�ḡ d� (7)

where d�= dv1 · · · dvd d�1 · · · d�K .
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Comparing (6) and (7) with (1), we easily see that in order to recover system (1) by taking the
moments of the distribution ḡ, the parameters �1 and �2 have to satisfy

�

2�1
= p + 1

3
aRT

4

K
�

2�2
= Kp +

(
2 − d

3

)
aRT

4

(8)

We will use the modified Maxwellian (5) to construct our second-order BGK scheme in the
next section.

3. A SECOND-ORDER BGK SCHEME BASED ON THE GENERALIZED MAXWELLIAN

Using the Maxwellian distribution (5), Tang and Wu [5] proposed a KFVS algorithm of first-order
for system (1) based on relations (6)–(8). In this section, based on the generalized Maxwellian
distribution ḡ given in (5) and the BGK schemes described in References [12, 16], we construct
a second-order BGK scheme for system (1), therefore, extending the KFVS scheme of first-order
in Reference [5].

For simplicity, we only describe our scheme for (1) in two dimensions. Extension to three-
dimensional problems is straightforward. We use (U, V ) to denote the velocity components (u1, u2)
in the x and y directions, and write (1) as

�W
�t

+ �F(W )

�x
+ �G(W )

�y
= 0 (9)

where

W = (�, �U, �V, E)t

F(W ) =
(
�U, �U 2 + p + aR

3
T 4, �UV,U

(
E + p + aR

3
T 4
))t

G(W ) =
(
�V, �UV, �V 2 + p + aR

3
T 4, V

(
E + p + aR

3
T 4
))t

Let xi = i�x , y j = j�y and tn = n�t (i, j, n ∈ Z) be the uniform mesh in cartesian coordinates,
where the �x,�y and �t are the mesh sizes in the x , y and t directions, respectively; and
let (i, j) denote the cell {(x, y); xi−1/2<x<xi+1/2, yi−1/2<y<yi+1/2}, where xi−1/2 = (i − 1

2 )�x
and yi−1/2 = (i − 1

2 )�y.
We denote by

Wi, j = (�i, j , (�U )i, j , (�V )i, j , Ei, j ) (10)

the cell-averaged conservative variables at time tn in cell (i, j) whose centre is (xi, j , yi, j ).
Upon integrating system (9) over the cell (i, j) and (tn, tn + �t), a conservative numerical

scheme for (9) is of the form

Wn+1
i, j =Wi, j+ 1

�x

∫ tn+�t

tn
(Fi−1/2, j−Fi+1/2, j ) dt+ 1

�y

∫ tn+�t

tn
(Gi, j−1/2−Gi, j+1/2) dt (11)
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where Fi−1/2, j and Gi, j−1/2 are the time-dependent numerical fluxes in the x and y directions
across the cell interface.

A BGK scheme is to construct the numerical fluxes Fi−1/2, j , Gi, j−1/2 by means of the explicit
solution of the BKG model and the relations between the macroscopic variables and the gas
distribution function (the solution of the BGK model). In this paper, we use the BGK model to
construct Fi−1/2, j , Gi, j−1/2 of second order by including the non-equilibrium effect, and give
therefore a second-order BGK scheme for (9).

The construction of the numerical fluxes Fi−1/2, j , Gi, j−1/2 is mainly divided in two stages:
(1) Initial reconstruction. It is directly applied to the initial cell-averaged conservative variables to
get the interpolated values (piecewise linear function) by using limiters. (2) Gas evolution stage. It
is a process to get the solution of the governing equation with the initial data obtained from the first
stage. More precisely, one can construct the initial distribution function f0 and the equilibrium state
ḡ from the reconstructed initial data, and thus obtain the general explicit solution (27) (i.e. (15))
of the BGK model at cell interfaces, from which one gets the numerical flux across cell interfaces.
In the sequel we will describe the stages in details.

The BGK model in two dimensions reads:

ft + u fx + v fy = − f − ḡ

�
(12)

where (u, v) is the particle velocity, � is the particle collision time related to the viscosity and heat
conduction coefficients, and ḡ is the Maxwellian distribution given by (5) that should satisfy the
compatibility condition: ∫

( f − ḡ)� du dv d� = 0 (13)

where

�= (�1,�2,�3, �4)
T ≡ (1, u, v, 1

2 (u
2 + v2 + �2))T

are the invariants. Recall that both f and ḡ depend on x, t, u, v and �.
Stage I (initial reconstruction): For a high resolution scheme, reconstruction techniques are

usually used to interpolate the cell-averaged mass, momentum and energy densities. The standard
nonlinear limiter, in particular the MUSCL limiter [19] is used in this paper.

Denote by

Wi, j = (�i, j , (�U )i, j , (�V )i, j , Ei, j )

the cell-averaged initial conservative variables in cell (i, j) whose centre is (xi, j , yi, j ), where
(U, V ) denotes the flow velocity. The initial flow variables are constructed as

W̄i, j (x, y) =Wi, j + Lx (W )(x − xi, j ) + Ly(W )(y − yi, j ) (14)

where the slopes Lx (W ), Ly(W ) are defined as follows: Let the function

L(s+, s−) = (sign(s+) + sign(s−))min{2|s+|, 2|s−|, 1
2 |s+ + s−|}

be the MUSCL limiter [19], then the slopes Lx (W ) and Ly(W ) take the form

Lx (W ) = L

(
Wi+1, j − Wi, j

xi+1, j − xi, j
,
Wi, j − Wi−1, j

xi, j − xi−1, j

)
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and

Ly(W ) = L

(
Wi, j+1 − Wi, j

xi, j+1 − xi, j
,
Wi, j − Wi, j−1

xi, j − xi, j−1

)

Stage II (gas evolution): In the evolution stage, we utilize the explicit solution of the BGK
model (12). Denote the cell interface between cells (i, j) and (i+1, j) by �i+1/2, j ={(xi+1/2, j , y);
j− 1

2 � y � j+ 1
2 }. The general solution f of (12) at the point Xi j = (xi+1/2, j , yi+1/2, j ) ∈ �i+1/2, j

and time t is given by

f (Xi j , t, u, v, �) = 1

�

∫ t

0
ḡ(x ′, y′, t ′, u, v, �) e−(t−t ′)/� dt ′

+ e−t/� f0(xi+1/2, j − ut, yi+1/2, j − vt) (15)

where x ′ = xi+1/2, j − u(t − t ′), y′ = yi+1/2, j − v(t − t ′), f0 is the initial gas distribution function.
For simplicity, we assume xi+1/2, j = 0, yi+1/2, j = 0. The initial gas distribution function f0 is

assumed to have the form

f0(x, y)=
{
gl(1 + alx + bly), x<0

gr(1 + arx + bry), x>0
(16)

with gl, gr being the Maxwellian distributions at the left and right of the cell interface which, in
view of (5), have the general form

gl = �l
�1l
�

(
�2l
�

)K/2

e−�1l[(u−Ul)
2+(v−Vl)2]−�2l�

2

and

gr = �r
�1r
�

(
�2r
�

)K/2

e−�1r[(u−Ur)
2+(v−Vr)2]−�2r�

2

Representation (16) means that even with a discontinuity at the cell interface, the gas is as-
sumed to stay in an equilibrium state on both sides of discontinuity, see Reference [20] for more
details.

The terms al, bl, ar, br in (16) are related to the spatial derivatives of a Maxwellian and assumed
to have the following form obtained from a Taylor expansion of the Maxwellian (5):

al = a1l + a2lu + a3lv + 1
2a4l(u

2 + v2) + 1
2a5l�

2

bl = b1l + b2lu + b3lv + 1
2b4l(u

2 + v2) + 1
2b5l�

2

ar = a1r + a2ru + a3rv + 1
2a4r(u

2 + v2) + 1
2a5r�

2

br = b1r + b2ru + b3rv + 1
2b4r(u

2 + v2) + 1
2b5r�

2

(17)

Let W̄ (x, y) be the piecewise linear function whose restriction on the cell (i, j) is W̄i, j (x, y).
Then, from the following relation between the macroscopic variables W̄ and the gas distribution
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function f0 (cf. (6))

W̄ =
∫

� f0 du dv d� (18)

we can obtain both gl and gr as well as their slopes in (16). In fact, by the initial reconstruction
(14), the left and right macroscopic states at the point Xi j = (xi+1/2, j , yi+1/2, j ) ∈ �i+1/2, j are

W̄i, j (Xi j ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

�̄i, j (Xi j )

(�̄Ū )i, j (Xi j )

(�̄V̄ )i, j (Xi j )

Ēi, j (Xi j )

⎞
⎟⎟⎟⎟⎟⎟⎠

, W̄i+1, j (Xi j ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

�̄i+1, j (Xi j )

(�̄Ū )i+1, j (Xi j )

(�̄V̄ )i+1, j (Xi j )

Ēi+1, j (Xi j )

⎞
⎟⎟⎟⎟⎟⎟⎠

(19)

which imply that ⎛
⎜⎜⎝

�l

Ul

Vl

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

�̄i, j (Xi j )

Ūi, j (Xi j )

V̄i, j (Xi j )

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

�r

Ur

Vr

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

�̄i+1, j (Xi j )

Ūi+1, j (Xi j )

V̄i+1, j (Xi j )

⎞
⎟⎟⎠

Correspondingly, �1l, �2l, �1r, �2r satisfy

�̄i, j (Xi j )

2�1l
= p̄i, j (Xi j ) + 1

3
aRT̄

4
i, j (Xi j )

K
�̄i, j (Xi j )

2�2l
= K p̄i, j (Xi j ) +

(
2 − d

3

)
aRT̄

4
i, j (Xi j )

and

�̄i+1, j (Xi j )

2�1r
= p̄i+1, j (Xi j ) + 1

3
aRT̄

4
i+1, j (Xi j )

K
�̄i+1, j (Xi j )

2�2r
= K p̄i+1, j (Xi j ) +

(
2 − d

3

)
aRT̄

4
i+1, j (Xi j )

where we have used p̄i, j , T̄ 4
i, j and p̄i+1, j , T̄ 4

i+1, j to denote the values of the pressure p and the
temperature T in the left and right cells of the point Xi j ∈ �1+1/2, j .

On the other hand, if we differentiate (18) with respect to x and y, and take into account (14),
(16) and (17), we see that al and bl can be obtained by the relations:

1

�l
Lx = 1

�l

⎛
⎜⎜⎜⎜⎜⎝

(��/�x)l

(�(�U )/�x)l

(�(�V )/�x)l

(�E/�x)l

⎞
⎟⎟⎟⎟⎟⎠= 1

�l

∫
�algl du dv d� = Ml

⎛
⎜⎜⎜⎜⎜⎜⎝

a1l

a2l

a3l

a4l

a5l

⎞
⎟⎟⎟⎟⎟⎟⎠

(20)
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A SECOND-ORDER BGK SCHEME 399

and

1

�l
Ly = 1

�l

⎛
⎜⎜⎜⎜⎜⎝

(��/�y)l

(�(�U )/�y)l

(�(�V )/�y)l

(�E/�y)l

⎞
⎟⎟⎟⎟⎟⎠= 1

�l

∫
�blgl du dv d� = Ml

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b1l

b2l

b3l

b4l

b5l

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(21)

The matrix

Ml = 1

�l

∫
� ⊗ �̃ du dv d�

is a function of the parameters (Ul, Vl, �1l, �2l) in gl, having the following form:

Ml =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 Ul Vl B1 − K

4�2l

K

4�2l

Ul U 2
l + 1

2�1l
UlVl B2 − KUl

4�2l

KUl

4�2l

Vl UlVl V 2
l + 1

2�1l
B3 − KVl

4�2l

KVl
4�2l

B1 B2 B3 B4 B5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where

B1 = 1

2

(
U 2
l + V 2

l + 1

�1l
+ K

2

1

�2l

)

B2 = 1

2

(
U 3
l + V 2

l Ul + 2
Ul

�1l
+ K

2

Ul

�2l

)

B3 = 1

2

(
V 3
l +U 2

l Vl + 2
Vl
�1l

+ K

2

Vl
�2l

)

B4 = 1

4

(
(U 2

l + V 2
l )2 +

(
4

�1l
+ K

2�2l

)
(U 2

l + V 2
l ) + 3

2�21l
+ 2K + 2

4�1l�2l

)

B5 = 1

4

(
K

2�2l
(U 2

l + V 2
l ) + K (K + 2)

4�22l
+ K

2�1l�2l

)

�̃ =
(
1, u, v, 1

2 (u
2 + v2), 1

2�
2
)t

In order to complete Equations (20) and (21), one has to give an additional equation for
al = (a1l, . . . , a5l) and bl = (b1l, . . . , b5l), respectively. In fact, recalling (16) and (17), the
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direct Taylor expansion of the Maxwellian (5) upon the spatial variables x and y leads to

a1l = 1

�l

(
��

�x

)
l
+ d

2�1l

(
��1
�x

)
l
+ K

2�2l

(
��2
�x

)
l
−
(

�
�x

[
�1(U

2 + V 2)
])

l

a2l = 2

(
�(�1U )

�x

)
l
, a3l = 2

(
�(�1V )

�x

)
l
, a4l = −2

(
��1
�x

)
l
, a5l = −2

(
��2
�x

)
l

b1l = 1

�l

(
��

�y

)
l
+ d

2�1l

(
��1
�y

)
l
+ K

2�2l

(
��2
�y

)
l
−
(

�
�y

[
�1(U

2 + V 2)
])

l

b2l = 2

(
�(�1U )

�y

)
l
, b3l = 2

(
�(�1V )

�y

)
l
, b4l = −2

(
��1
�y

)
l
, b5l = −2

(
��2
�y

)
l

Eliminating T 4 in relations (8) and differentiating then the resulting equation with respect to x
and y, we obtain

K�l
12�22l

a5l − (2 − d/3)�l
4�21l

a4l =
(

(2 − d/3)

2�1l
− K

6�2l

)(
��

�x

)
l
−
(
2 − d

3
− K

3

)(
�p
�x

)
l

K�l
12�22l

b5l − (2 − d/3)�l
4�21l

b4l =
(

(2 − d/3)

2�1l
− K

6�2l

)(
��

�y

)
l
−
(
2 − d

3
− K

3

)(
�p
�y

)
l

(22)

where (by (2))

(
�p
�x

)
l
= (� − 1)

(
Tl

(
��

�x

)
l
+ �l

(
�T
�x

)
l

)
(

�T
�x

)
l
=
(
�l + 4aRT

3
l

)−1
{(

�E
�x

)
l
− �lUl

(
�U
�x

)
l

−�lVl

(
�V
�x

)
l
− 1

2

(
U 2
l + V 2

l

)(��

�x

)
l
− Tl

(
��

�x

)
l

}

and �pl/�y is given in the same manner. Thus, solving the system of algebraic Equations (20)–(22),
one obtains al and bl. In the same manner, the slopes ar and br can be obtained. So, in view of
(16), the initial distribution f0 has been determined.

To determine the equilibrium state ḡ in (12) around the point (x = 0, y = 0) of the cell interface,
we assume that ḡ is given by

ḡ(x, y, t) = g0(1 + ālx(1 − H(x)) + ārxH(x) + b̄y + Āt) (23)

where H(x) is the Heaviside function, g0 is a local Maxwellian distribution located at
(x = y = 0, t = 0). Notice that ḡ is continuous but has different x-slopes on both sides of x = 0.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:391–416
DOI: 10.1002/fld



A SECOND-ORDER BGK SCHEME 401

The local Maxwellian distribution g0 has the form (cf. (5))

g0 = �10
�

(
�20
�

)K/2

e−�10[(u−U0)
2+(v−V0)2]−�20�

2
(24)

where U0, V0, �10 and �20 (at time t = 0) can be obtained as follows, using (15) with t → 0, and
the compatibility condition (13) at (x = y = 0, t = 0) and taking into account (6).

W0 ≡

⎛
⎜⎜⎜⎜⎜⎝

�0

�0U0

�0V0

E0

⎞
⎟⎟⎟⎟⎟⎠=

∫
�g0 du dv d� =

∫
u>0

∫
�gl du dv d� +

∫
u<0

∫
�gr du dv d� (25)

which gives W0. Once the macroscopic variables W0 is obtained, the parameters �10 and �20 are
then given by

�0
2�10

= p0 + 1

3
aRT

4
0 , K

�

2�20
= Kp0 +

(
2 − d

3

)
aRT

4
0 (26)

From (25) and (26), we get U0, V0, �10, �20. Thus, g0 is determined.
As aforementioned, the coefficients āl, ār, b̄, Ā in ḡ are related to the derivatives of a Maxwellian

in space and time, and assumed to have the following form obtained from a Taylor expansion of
a Maxwellian:

āl = ā1l + ā2lu + ā3lv + 1
2 ā4l(u

2 + v2) + 1
2 ā5l�

2

ār = ā1r + ā2ru + ā3rv + 1
2 ā4r(u

2 + v2) + 1
2 ā5r�

2

b̄ = b̄1 + b̄2u + b̄3v + 1
2 b̄4(u

2 + v2) + 1
2 b̄5�

2

Ā = Ā1 + Ā2u + Ā3v + 1
2 Ā4(u

2 + v2) + 1
2 Ā5�

2

Then, āl, ār in ḡ can be obtained by differentiating (13) with respect to x , and taking then the
value at (x = y = 0, t = 0) as follows (cf. the derivation of (20)).

W0 − W̄i, j (xi, j , yi, j )

�0�x− = M̄0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ā1l

ā2l

ā3l

ā4l

ā5l

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, −W0 − W̄i+1, j (xi+1, j , yi+1, j )

�0�x+ = M̄0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ā1r

ā2r

ā3r

ā4r

ā5r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where �x− = xi+1/2 − xi , �x+ = xi+1 − xi+1/2; and the matrix M̄0 = (1/�0)
∫

� ⊗ �̃g0 du dv d�
has the same structure as the matrix Ml only with �l,Ul, Vl, �1l and �2l replaced by �0,U0, V0, �̄10
and �̄20.
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On the other hand, there should hold

K�0
12�220

ā5l − (2 − d/3)�0
4�210

ā4l =
(

(2 − d/3)

2�10
− K

6�20

)(
��0
�x

)
l

−
(
2 − d

3
− K

3

)(
�p0
�x

)
l

K�0
12�220

ā5r − (2 − d/3)�0
4�210

ā4r =
(

(2 − d/3)

2�10
− K

6�20

)(
��0
�x

)
r

−
(
2 − d

3
− K

3

)(
�p0
�x

)
r

where we denote

((
��0
�x

)
l

,

(
�(�0U0)

�x

)
l

,

(
�(�0V0)

�x

)
l

,

(
�E0

x

)
l

)
=
(
W0 − W̄i, j (xi, j , yi, j )

�0�x−

)t

((
��0
�x

)
r

,

(
�(�0U0)

�x

)
r

,

(
�(�0V0)

�x

)
r

,

(
�E0

�x

)
r

)
=
(

−W0 − W̄i+1, j (xi+1, j , yi+1, j )

�0�x+

)t

(
�p0
�x

)
l

= (� − 1)

(
T0

(
��0
�x

)
l

+ �0

(
�T0
�x

)
l

)

(
�T0
�x

)
l

= (�0 + 4aRT
3
0 )−1

{(
�E0

�x

)
l

− T0

(
��0
�x

)
l

− �0U0

(
�U0

�x

)
l

−�0V0

(
�V0
�x

)
l

− 1

2

(
U 2
0 + V 2

0

)( ��0
�x

)
l

}

and (�p0/�x)r is defined in the same manner.
In the y direction at (x = y = 0, t = 0), the term b̄ in ḡ can be determined by the compatibility

condition,

�
�y

∫
�(g − f0) du dv d�= 0

which yields consequently

1

�0

∫
�b̄g0 du dv d� = M̄0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

b̄1

b̄2

b̄3

b̄4

b̄5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1

�0

(∫
u>0

∫
�blgl du dv d� +

∫
u<0

∫
�brgr du dv d�

)
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Similarly, b̄4, b̄5 should satisfy

K�0
12�220

b̄5 − (2 − d/3)�0
4�210

b̄4 =
(

(2 − d/3)

2�10
− K

6�20

)(
��0
�y

)
0

−
(
2 − d

3
− K

3

)(
�p0
�y

)
0

where we denote

((
��0
�y

)
0

,

(
�(�0U0)

�y

)
0

,

(
�(�0V0)

�y

)
0

,

(
�E0

�y

)
0

)

= 1

�0

( ∫
u>0

∫
�blgl du dv d� +

∫
u<0

∫
�brgr du dv d�

)t

(
�p0
�y

)
0

= (� − 1)

(
T0

(
��0
�y

)
0

+ �0

(
�T0
�y

)
0

)

(
�T0
�y

)
0

=
(
�0 + 4aRT

3
0

)−1
{(

�E0

�y

)
0

− T0

(
��0
�y

)
0

− �0U0

(
�U0

�y

)
0

−�0V0

(
�V0
�y

)
0

− 1

2

(
U 2
0 + V 2

0

)( ��0
�y

)
0

}

Solving the above algebraic equation, one gets the coefficient b.
Up to now, we have determined all the parameters in the initial gas distribution function f0 and

the equilibrium state ḡ at the beginning of the each time step t = 0. Inserting (16) and (23) into
Equation (15), we obtain the final gas distribution function f (x, y, t, u, v) at the point x = y = 0,

f (0, 0, t, u, v, �) = (1 − e−t/�)g0 + (�(−1 + e−t/�) + t e−t/�)

× [(ālH(u) + ār(1 − H(u)))u + b̄v]g0 + �

(
t

�
− 1 + e−t/�

)
Āg0

+ e−t/�[(1−utal−vtbl)H(u)gl+(1−utar−vtbr)(1−H(u))gr] (27)

where the only unknown left is Ā. To determine Ā, we use the compatibility condition (13) at
x = y = 0 in the whole time step �t , namely

∫ �t

0

∫
(ḡ − f )(0, 0, t, u, v, �)� du dv d� dt = 0
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which yields

M̄0 Ā = 1

�0

∫
{�1g0 + �2u[ālH(u) + ār(1 − H(u)) + b̄v] + �3[H(u)gl + (1 − H(u))gr]

+ �4u[(alu + blv)H(u)gl + (aru + brv)(1 − H(u))gr]}� du dv d� (28)

where

�0 = � − �(1 − e−�/�)

�1 = −(1 − e−�t/�)/�0

�2 = [−�t + 2�(1 − e−�/�) − �t e−�t/�]/�0
�3 = (1 − e−�t/�)/�0

�4 = [�t e−�t/� − �(1 − e−�t/�)]/�0
Since all the moments on the right-hand side of Equation (28) can be calculated explicitly, if we
denote that((

��0
�t

)
,

(
�(�0U0)

�t

)
,

(
�(�0V0)

�t

)
,

(
�E0

�t

))

=
(

1

�0

∫ {
�1g0 + �2u

[
ālH(u) + ār(1 − H(u)) + b̄v

]+ �3 [H(u)gl + (1 − H(u))gr]

+ �4u [(alu + blv)H(u)gl + (aru + brv)(1 − H(u))gr]
}
� du dv d�

)t

(
�p0
�t

)
= (� − 1)

(
T0

(
��0
�t

)
+ �0

(
�T0
�t

))
,

(
�T0
�t

)
=
(
�0 + 4aRT

3
0

)−1
{(

�E0

�t

)
− T0

(
��0
�t

)
− �0U0

(
�U0

�t

)

−�0V0

(
�V0
�t

)
− 1

2

(
U 2
0 + V 2

0

)( ��0
�t

)}

then Ā4 and Ā5 should satisfy

K�0
12�220

Ā5 − (2 − d/3)�0
4�210

Ā4 =
(

(2 − d/3)

2�10
− K

6�20

)(
��0
�t

)
−
(
2 − d

3
− K

3

)(
�p0
�t

)

Solving the above algebraic equations, one obtains then the coefficient Ā.
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Thus, we have obtained all the parameters which are needed in the construction of the gas
distribution function f (x, y, t, u, v, �) at a cell interface. Once we get f , the time-dependent
numerical flux Fi+1/2, j from (11) in the x direction across the cell interface is given then by
taking the moments of f with the invariants (recalling xi+1/2, j = 0):

Fi+1/2, j =

⎛
⎜⎜⎜⎜⎜⎝

F�

F�U

F�V

FE

⎞
⎟⎟⎟⎟⎟⎠=

∫
u

⎛
⎜⎜⎜⎜⎜⎜⎝

1

u

v

1
2 (u

2 + v2 + �2)

⎞
⎟⎟⎟⎟⎟⎟⎠

f (0, 0, t, u, v, �) du dv d� (29)

In the same manner, we can construct the time-dependent numerical flux Gi, j+1/2 in the y direction.
Having constructed Fi+1/2, j and Gi, j+1/2, we can get by (11) the total mass, momentum and energy
at time step tn+1. This procedure can be repeated in the next time level.

In summary, our numerical algorithm consists of two steps:

(1) Initial reconstruction: it is directly applied to the conservative variables to get the interpolated
values W̄i, j (x, y) from the cell average Wi, j by using limiters.

(2) Gas evolution stage: it is a process to get the solution of the governing equation with
the initial data obtained from the first step. More precisely, one can construct the initial
distribution function f0 and the equilibrium state ḡ from the reconstructed initial data, and
thus obtain the general explicit solution (27) (i.e. (15)) of the BGK model at cell interfaces,
from which one gets the numerical flux across cell interfaces.

As the end of this section, we point out that due to inclusion of the non-equilibrium effect, the
BGK scheme of this paper solves actually the compressible Navier–Stokes equations (30) below,
which provide a delicate dissipative mechanism controlled by the pseudo-particle collision time
and the intrinsic collisional model, to get a stable and crisp shock transition in nonsmooth regions.
In fact, by terms of the Chapman–Enskog expansion and straightforward calculations, we see that
the first-order approximation of the BGK model (12) is given by⎛

⎜⎜⎜⎜⎜⎜⎝

�

�U

�V

E

⎞
⎟⎟⎟⎟⎟⎟⎠

t

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�U

�U 2 + P

�UV

(E + P)U

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

x

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�V

�UV

�V 2 + P

(E + P)V

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

y

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0

s1x

s2x

s3x

⎞
⎟⎟⎟⎟⎟⎟⎠

x

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0

s1y

s2y

s3y

⎞
⎟⎟⎟⎟⎟⎟⎠

y

(30)

where

P = (� − 1)�T + aRT 4

3

E = 1
2 (�U

2 + �V 2) + �T + aRT
4

s1x = �

{
2PUx −

(
(� − 1)� + 4aRT 3/3

� + 4aRT 3
(P + aRT

4) − aRT 4

3

)
(Ux + Vy)

}
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s1y = �P(Ux + Vy)

s2x = �P(Ux + Vy)

s2y = �

{
2PVy −

(
(� − 1)� + 4aRT 3/3

� + 4aRT 3
(P + aRT

4) − aRT 4

3

)
(Vy +Ux )

}

s3x = �

{
P[2UUx + V (Uy + Vx )] +

(
��T + 4aRT 4/3

�

)
x

−U

(
(� − 1)� + 4aRT 3/3

� + 4aRT 3
(P + aRT

4) − aRT 4

3

)
(Ux + Vy)

}

s3y = �

{
P[VVy +U (Uy + Vx )] +

(
��T + 4aRT 4/3

�

)
y

−V

(
(� − 1)� + 4aRT 3/3

� + 4aRT 3
(P + aRT

4) − aRT 4

3

)
(Ux + Vy)

}

From the right-hand side of (30), it is not difficult to see that for 1� � � 3 the right-hand side
of (30)2–(30)4 is an elliptic operator with respect to U, V, T , which enhance the stability of the
BGK scheme. On the other hand, �x s3x and �ys3y contain the second-order terms �xx , �yy , the
coefficients of which are always non-positive, while for the Euler equations this is not the case
because of aR = 0. These negative second-order terms perhaps could affect the stability of the
scheme for some problems, and this would be our future study. Fortunately, in our numerical tests
given in the next section, we do not observe instability.

4. NUMERICAL TESTS

In this section, we present some numerical examples, some of which have been tested by the (first-
order) KFVS scheme presented in References [4, 5]. To show the performance of our scheme, the
comparison with the numerical results in Reference [5] is given.

For all numerical examples in this section, the collision time � is taken as

� = 	�t + min

{
1.0,C1

|Pl − Pr|
Pl + Pr

}
�t (31)

where �t is the CFL time step, and Pl, Pr are the corresponding pressures in the states gl, gr of
the initial gas distribution function f0, respectively, 	 and C1 are positive constants. In (31), the
first term on the right-hand side gives a limit on the collision time to avoid the blowing up
the computation such as the evaluation of �t/�, and also provides a background dissipation for
the numerical fluid, while the second term is related to the pressure jump which introduces
additional artificial dissipation if high pressure gradients are present in the fluid. In the smooth
flow region or in the vicinity of the slip line, the artificial dissipation introduced is very small
or diminishes because of continuous pressure distribution, see References [16, 20, 21] for more
discussions. We will apply the MUSCL-type limiter to reconstruct the macroscopic initial data,
and use uniform grids and take � = 5/3 in all numerical tests.
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In the following first three examples, we test our scheme for one-dimensional problems, in
which we take all 	= 0.01, aR = 1, C1 = 5.0 and CFL= 0.45.

Example 1
One-dimensional shock-tube problem with the initial data

(�, T, u)t=0 =
{

(1, 0.5, 50), x<0.6

(2, 1,−40), x>0.6

A 100 grid cells with �x = 0.01 are employed in the simulation domain (0, 1). Figure 1 shows
the numerical results for the total density, temperature and velocity at t = 0.04. The results are
compared with those of using the KFVS scheme of Tang and Wu [5] and the first-order BGK as
well as 2000 cells. It can be seen that the second-order BGK scheme resolves obviously better
than the KFVS and first-order schemes.

Example 2
To show that the scheme does work well with strong shocks, we take the initial data of one-
dimensional Riemann problem as

(�, T, u)t=0 =
{

(1, 0.5, 150), x<0.5

(2, 1, −100), x>0.5

The computation is performed in the domain (0, 1) with 100 cells (�x = 0.01). The simulation
results are shown in Figure 2 for the total density, temperature and velocity at t = 0.018. We
can observe an obvious improvement of the second-order BGK scheme over the KFVS and first-
order schemes.

Example 3
One-dimensional shock-tube problem involving the rarefaction waves with the initial data
for (�, T, u):

(�, T, u)t=0 =
{

(1, 1, −1), x<0.5

(1, 1, 1), x>0.5

The computation is performed in the domain (0, 1) with 100 cells (�x = 0.01). Figure 3 shows
the numerical results for the total density, temperature and velocity at t = 0.2. We observe that
the results here are comparable to those in Reference [4], and again that the second-order BGK
scheme resolves obviously better than the KFVS and first-order schemes. We should point out that
there is a ‘starting error’ resulting from the purely discontinuous initial data, which induces some
error at x = 0.5.

In the following two examples, we test our scheme for two-dimensional problems, and we take
all 	= 0.05, C1 = 5.0 and CFL= 0.45.

Example 4
The first problem is the interaction between a shock and a denser cylindrical bubble. Initially, there
is a Mach 256.7 strong shock at x0 = 1.64, propagating in the x direction. The pre- and post-shock
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Figure 1. Solid line: the solution obtained using 2000 cells; Gradient: the first-order BGK scheme; RTriang:
T-M’s results; Diamond: the second-order BGK scheme.
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Figure 2. Solid line: the solution obtained using 2000 cells; Gradient: the first-order BGK scheme; RTriang:
T-M’s results; Diamond: the second-order BGK scheme.
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Figure 3. Solid line: the solution obtained using 2000 cells; Gradient: the first-order BGK scheme; RTriang:
T-M’s results; Diamond: the second-order BGK scheme.
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Figure 4. The solutions obtained using 256× 128 cells: (a) density; (b) temperature for the KFVS
scheme; (c) density; and (d) temperature for the second-order BGK scheme. Temperature, 15 contours:

1.745488–26.1831; Density, 30 contours: 2.59141–96.4827.
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Figure 5. The density and temperature in the diagonal of x = 2y obtained using the KFVS and second-order
BGK schemes in Problem 4. Square: the second-order BGK scheme with 512× 512 cells; Delta: the

second-order BGK with 256× 256 cells; Diamond: the KFVS scheme with 256× 256 cells.

states for (�, T, u, v) are taken as (1, 0.01,−22.9472, 0) and (6.57615, 20, 0, 0). On the other
hand, there is a cylindrical bubble with radius R = 0.15 located at (x0 + 0.18, 0.5), and the state
in the bubble is 100 denser than the pre-shock state. The computation domain is 2× 1, the left,
right, upper and lower boundary conditions are zero gradient for the flow variables, and aR = 0.01.
A grid of 256× 128 with �x = �y = 1/128 is used in the computation. The numerical results for
the density and temperature at t = 0.07 are shown in Figure 4, where comparing with the results
in References [4, 5], good agreement is seen here in the large-scale structure. The comparison of
our scheme with the KFVS scheme in Reference [5] is given in Figure 5, where one-dimensional
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Figure 6. The results with 256× 128 cells in Problem 5: (a) density; (b) temperature for the KFVS
scheme; (c) density; and (d) temperature for the second-order BGK scheme. Temperature, 20 contours:

0.199425–2.2785; Density, 30 contours: 2.07753–33.326.
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Figure 7. Density and temperature in the diagonal of x = 2y using the KFVS and second-order BGK
schemes in Problem 5. Square: the second-order BGK scheme with 512× 512 cells; Delta: the second-order

BGK scheme with 256× 256 cells; Diamond: the KFVS scheme with 256× 256 cells.

contours are shown. We see that the second-order scheme resolves better in accuracy, comparing
with the result obtained using 512 cells.

Example 5
The second problem is the interaction between a wind and a denser cylindrical bubble.
Initially, there is a cylindrical bubble of radius R = 0.15 with its centre located at (0.3, 0.5)
in the computation domain 2× 1. The bubble is 25 times denser than the ambient gas whose
state is (1, 0.09, 0, 0) for (�, T, u, v). In this problem, the wind is introduced through the left
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boundary, on which the state (1, 0.09, 6(1 − e−10t ), 0) for (�, T, u, v) is always assigned. The
right, upper and lower boundary conditions are zero gradient for the flow variables, aR is taken
to be 1. The computation is performed with 256× 128 cells (�x = �y = 1/128). The simulation
results for density and temperature at t = 0.6 are shown in Figure 6, where the simulated results
reproduce the large-scale structure of the corresponding numerical results in References [4, 5]. The
comparison of our scheme with the KFVS scheme in Reference [5] is given in Figure 7, where
one-dimensional contours are shown. Again, we observe from Figure 7 that the second-order
scheme performs better in resolution, comparing with the result obtained using 512 cells.

5. CONCLUSIONS

In this paper, based on the inclusion of a non-equilibrium effect to a KFVS scheme, the use of the
generalized Maxwellian introduced in Reference [5] and the second-order BGK scheme for the
Euler equations in References [12, 16], we present a second-order BGK scheme for the equations
of multidimensional radiation hydrodynamics in (equilibrium diffusion and) zero diffusion limit,
and extend therefore the first-order KFVS scheme in Reference [5] to a second-order BGK scheme.
One- and two-dimensional numerical experiments are carried out, and the numerical results validate
the scheme and show that the second-order BGK scheme improves obviously the accuracy and
resolution over the KFVS scheme and the first-order BGK scheme.

We should point out that in view of the Chapman–Enskog expansion, the BGK scheme of the
present paper solves actually the compressible Navier–Stokes equations (30), which provide a
delicate dissipative mechanism controlled by the pseudo-particle collision time and the intrinsic
collisional model, to get a stable and crisp shock transition in nonsmooth regions. However, the
non-positivity of the coefficients of �xx and �yy on the right-hand side of (30)4 could perhaps
affect the stability of the scheme for some problems (although no instability is present in our
numerical tests), and this would be the topic of further studies.
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